Faculty of Medicine Siriraj Hospital

Antimicrobial treatment in 2011

Pornpan Koomanachai, MD Division of Infectious Diseases and Tropical Medicine Department of Medicine Faculty of Medicine Siriraj Hospital Mahidol University

- Patient (Host) factors
- Basic principles of Pharmacokinetics & Pharmacodynamics
- Types of Antibiotics
- Drug selection
- Appropriate use; timing and duration
- Organism factors: drug-resistant

F และแห่งแห่งสารักวิราชพยายาล มหาวิทยาลัยมพิดล faculty of medicine siriraj hospital

Optimal Antibiotics Administration

Patient (Host) factors

Faculty of medicine siriraj Hospital

Optimal Antibiotics Administration

Patient (Host) factors

- advanced age
- chronic and/or severe disease
- polypharmacy
- immunodeficiency
- received prior surgical or medical interventions (i.e., blood products, oncologic, or rheumatologic medications)

Faculty of medicine siriraj Hospital

Optimal Antibiotics Administration

- Patient (Host) factors
 - The prior use of antibiotic therapy -> increased risk of antibiotic-resistant pathogen infection
 - More severe of the illness
 - extended hospital stay
 - frequently of intubation
 - parenteral nutrition, or other medical devices
 - (i.e., central venous or urinary catheters)

Increase the risk of a hospital acquired infection (HAI) with a drug-resistant pathogen

F กอะแพทยศาสตร์ที่วิราชพยายาต มหาวิทยาดัยมพิดด ACULTY OF MEDICINE SIRIRAJ HOSPITAL

Optimal Antibiotics Administration

Basic principles of Pharmacokinetics & Pharmacodynamics Types of Antibiotics Drug selection

Faculty of Medicine siriraj Hospital

Basic principles of Pharmacokinetics & Pharmacodynamics

Common antibiotic pharmacokinetic and minimal inhibitory concentration (MIC) pharmacodynamic relationships

Basic principles of Pharmacokinetics & Pharmacodynamics

Faculty of Medicine siriraj Hospital

Basic principles of Pharmacokinetics & Pharmacodynamics

• Time-dependent antibiotics

 Optimal bacterial kill; maximum amount of time over the MIC

 Extended or continuous infusions of beta-lactams Faculty of Medicine siriraj Hospital

Optimal Antibiotics Administration

• Time-dependent antibiotics

Several clinical studies:

- Extended infusion vs standard dosing
 beta-lactams in the acutely ill patient
 (include meropenem, piperacillin/tazobactam and doripenem)
- The outcome: varied from no difference in clinical cure in the infusion group to a clinically significant enhanced cure rate

- Time-dependent antibiotics
- Glycopeptides: Vancomycin
 - 100 courses of continuous infusion the treatment of suspected MRSA infections
 - 78% of patients achieved plateau concentrations (>15mg/L) on Day 1 with minimal risk of toxicity (<35mg/L)
 - Increased to 85% on Day 2 sustained for the course
 - The lowest concentration; 9.3 mg/L
 - (> MIC for most MRSA)

Guy's and St Thomas' NHS Foundation Trust (GSTT)

Concentration-dependent antibiotics

A high initial concentration is required:

Maximum bacterial kill

– Tissue penetration

Aminoglycoside once daily dose

Loading dose (LD)

The $LD = V \times Cp$

the volume of distribution (V) the required plasma concentration (Cp)

- *Hydrophilic agents: which disperse mainly in water
- *Lipophilic agents: greater affinity for adipose

tissue

F กิจและแพทแทนสารัสวิราชพยายาล มหาวิทยาลัยมพิลล ACULTY OF MEDICINE SIRIRAJ HOSPITAL

Optimal Antibiotics Administration

Hydrophilic agents

Lipophilic agents

Smaller volume of distribution Likely to be renally

eliminated unchanged

Increased clearance in severe sepsis

Beta lactams Aminoglycosides Glycopeptides Larger volume of distribution

Likely to be hepatically metabolized

More likely to penetrate deep tissues

Fluoroquinolones Macrolides Rifampicin Linezolid

Appropriate use; Timing and Duration

Timeliness and appropriateness of antibiotic

Dosage

• route

duration of administration

- Get effective antibiotic selection, right first time
- Base antimicrobial selection, empiric and targeted; local susceptibility patterns
- Use broad-spectrum "but least" antibiotics early
- Optimize the dose and route of administration

 Administer for the shortest possible duration
 Adjust/stop antibiotic to best target the pathogen(s) and remove pressure for resistance development: de-escalation

Initiation of antibiotic

- Within the first hour after diagnosis of severe sepsis and septic shock
- Systematic Review and Meta-Analysis
 The Efficacy of Appropriate Empiric
 Antibiotic Therapy for Sepsis
 - inappropriate empirical antibiotic treatment is significantly associated with all causes mortality in prospective studies

How long should a course of antibiotic therapy last?

• The Surviving Sepsis Campaign

- The duration of therapy should typically be 7–10 days
- Longer courses may be appropriate if
 - slow clinical response
 - an undrainable focus of infection
 - immunological deficiencies
 - neutropenia

How long should a course of antibiotic therapy last?

Ventilator-associated pneumonia

- Clinical effectiveness was achieved with 8 or 15 d treatment
- Significant reduction in the emergence of multiresistant pathogens in the shorter course

Infection

• VAP

- Pneumococcal meningitis
- Pneumococcal pneumonia
- Empyema/lung abscess
- Endocarditis
- Osteomyelitis

<u>Minimum</u> duration

8 days 7 days 5 days 4 - 6 wks 4 wks 4 wks F กอะแพทยศาสตร์ที่วิราชพยายาส มหาวิทยาลัยมพิลล Aculty of Medicine Siriraj Hospital

Optimal Antibiotics Administration

Organism factors: • Drug-resistant Gram-Negative Pathogens

Drug-resistant Gram-Positive Pathogens

MDR bacterial infection

Risk Factors for MDR Pathogens for Both Nosocomial and Community-Acquired Infections

- Antimicrobial therapy in preceding 90 days
- Current hospitalization of 5 days or more
- High frequency of antibiotic resistance in the community or in the specific hospital unit
- Presence of risk factors for health care—associated pneumonia
- Hospitalization for 2 days or more in the preceding 90 days

Adapted from Am J Respir Crit Care Med. 2005;171(4):388-416.

MDR bacterial infection

Risk Factors for MDR Pathogens for Both Nosocomial and Community-Acquired Infections

- Residence in a nursing home or extended care facility
- Home infusion therapy
- Chronic dialysis within 30 days
- Home wound care
- Family member with multidrug-resistant pathogen
- Immunosuppressive disease and/or therapy

Adapted from Am J Respir Crit Care Med. 2005;171(4):388-416.

Faculty of Medicine siriraj Hospital

Optimal Antibiotics Administration

Antibiotics

For Drug-Resistant GN Infection

Faculty of Medicine siriraj Hospital

Antibiotics For Drug-Resistant GN Infection Carbapenem

- Colistin
- Tigecycline

Combination therapy

Carbapenem

	Ertapenem	Imipenem	Meropenem	Doripenem
I/C	Community settings intraabdominal or skin and soft tissue infection Out patient ATB Rx	Empirical Rx of serious infections in previously multiple ATBs use Polymicrobial infection Suspected MDR or ESBL producer, Amp C producer GNR MDR <i>P. aeruginosa</i> infection		
C/I	Relative contraindication	n to prior hypersensitivity type I to ß lactams		
<u>Dose</u> loading dose	1 g IV	1 g IV (> 1 g, epileptogenic)	2 g IV	500 mg (1 g ?) IV
maintenance dose	1 g IV once daily	500 mg-1 g IV q 6 h (max 4 g/d)	1-2 g IV q 8 h (max 6 g/d)	500 mg IV q 8 h (1 g IV q 8 h ?)
prolonged infusion	NA	√ (3 h)	√ (3 h)	√ (3-4 h)
Renal dose adjustment	Yes	Yes	Yes	Yes

Zhanel GG et al. Drugs 2007;67:1027-52, Chahine EB et al. Am J Health-Syst Pharm 2010;67:2015-24, Mandell's Priniciples and practice of infectious disease 7th 2010

Carbapenem

	Ertapenem	Imipenem	Meropenem	Doripenem
Common ADRs	Phlebitis GI upset Rash Pruritus	Phelbitis GI upset Rash Pruritus	Phlebitis GI upset Rash Pruritus	Headache, insomnia GI upset Elevated liver enz. Phlebitis
Epilepto- genicity	Less	0.5-2% <u>Risk factors:</u> renal ds, pre-exisiting CNS ds or infection, Hx of seizure, high dose (\geq 4 g/d)	Less	Less
Special issues	Lowest collateral damage to <i>P. aeruginosa,</i> <i>A. baumannii</i>	Intraabdominal infection suspected enterococcal coninfection Resist to imipenem ≠ Resist to meropenem, or doripenem	US FDA approved for Rx of CNS infection	Similar structure to meropenem In <i>vitro</i> : MIC90 for <i>P. aeruginosa</i> 2-4 times lower than meropenem, but limited clinical data Not substituted to older carbapenems

Zhanel GG et al. Drugs 2007;67:1027-52, Chahine EB et al. Am J Health-Syst Pharm 2010;67:2015-24

Carbapenems

- For ESBL and AmpC-producing organisms
- BUT! not for
 - Carbapenem-resistant *P. aeruginosa* and *Acinetobacter* sp.
 - Intrinsically carbapenem-resistant
 Stenotrophomonas maltophilia and E. faecium

Polymyxin: Colistin

• Spectrums:

- Some GN Enterobacteriaceaes, A. baumannii, P. aeruginosa
- Poor activity against *Serratia* spp., *Burkholderia* spp., *Proteus* spp., *Salmonella* spp., *Aeromonas* spp.
- No activity against GP, most anaerobes

Indication

Preserved for infection from MDR or pan-DR *A. baumannii*, *P. aeruginosa*, or enterobacteriaceaes

Contraindication:
 polymyxin allergy

Optimal Antibiotics Administration

Colistin Adverse effect

- Nephrotoxicity (10% 20%) : Acute tubular necrosis
- Neurotoxicity (7%) : Dizziness, weakness, facial paresthesia, vertigo, etc.
 - Dose dependent & reversible

Risk factors of nephrotoxicity

- Previous renal insufficiency
 - Duration of treatment
- Concomitant use of other nephrotoxic drugs

Colistin

- Key therapeutic options for carbapenem-resistant organisms ** *P. aeruginosa, A. baumannii* and carbapenemase producing *Enterobacteriacae* DUTL pet for
- BUT! not for
 - Organisms inherently resistant to polymyxins include Serratia sp., Proteus sp., Stenotrophomonas maltophilia, Burkholderia cepacia and Flavobacterium sp.

Colistin: dose and administration

Suggested Dosing of Colistin based on PK/PD

Cr. Clearance > 50 ml/min

300 mg, then 150 mg q 12 h or 100 mg q 8 h

Cr. Clearance 41 – 50 ml/min

300 mg, then 150 mg q 12 h or 75 - 100 mg q 8 h

Cr. Clearance 31 – 40 ml/min

300 mg, then 75 - 100 mg q 12 h

Cr. Clearance 21 – 30 ml/min

300 mg, then 75 mg q 12 h or 150 mg q 24 h **Cr. Clearance 11 – 20 ml/min**

300 mg, then 100 mg q 24 h

Thamlikitkul V., Koomanachai P., 2011, unpublished data

Faculty of Medicine siriraj Hospital

Tigecycline

- Derived from minocycline, similar to tetracycline
- Very broad spectrum wtith <u>bacteriostatic activity</u>
 - GP include MRSA, E. faecalis, E. faecium, and VRE
 - GN include ESBL producing *E. coli, Klebsiella* spp., (*A. baumannii, Serratia* spp.) *S. maltophilia*
 - Anaerobes, atypical pathogens
 - No activity against *P. aeruginosa, Proteus* spp.

 Contraindication: hypersensitivity to tetracycline, pregnancy, severe hepatic impairment

• FDA approved: cSSSI, cIAI, CAP

Tigecycline

Loading dose: 100 mg IV infusion 30-60 min

- Maintenance dose: 50 mg IV q 12 h
- Hepatic dose adjustment
 Severe liver impairment or C-P class C: 100 mg IV
 loading then maintenance dose 25 mg IV q 12 h
- Common ADR: GI disturbance

Not recommended: UTI and Bacteremia

Kasbekar N et al. Am J Health-Syst Pharm 2006;63:1235-43 Peterson LR. International Journal of Antimicrobial Agents 2008;32:S215-22

MDR bacterial infection

F สถิธิแห่งของสารสรัสวิราชพอกอาด องหาวิทยาลัยอพิตล ACULTY OF MEDICINE SIRIRAJ HOSPITAL

Antibiotics against MDR A. baumannii

Antibiotics	In vitro activities	Clinical efficacy	Limitation of usage
Colistin	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$	-Nephrotoxicity -Renal dysfunction: dose adjustment
Tigecycline	$\sqrt{\sqrt{1}}$? Case report or Salvage therapy with colistin	-Low serum concentration -Not enough clinical data
Sulbactam combination	$\sqrt{\sqrt{1}}$	\checkmark	-Increasing of resistant
Fosfomycin	\checkmark	?	-Not enough clinical data

Combination therapy

- Insufficient clinical data
- Polymyxins and carbapenems (even in the presence of carbapenem resistance)
- Polymixin and tigecycline

 Polymyxin; in vitro synergism together with or sulbactam/ampicillin, or rifampicin

Colistin in Combination Therapy

- Few comparative studies have analysed.
 - No clinical benefits for combination
 (colistin plus amikacin or β-lactams) therapy in critically ill patients with severe infections by
 P. aeruginosa

Clin Infect Dis 2003;37:e154-60

 No superiority for the association of meropenem-colistin vs colistin alone

Clin Microbiol Infect 2006;12:1227-30

Colistin in Combination Therapy

 The clinical response in the patients who received <u>colistin alone</u> was 84.8% and in those who received <u>colistin with other antibiotics</u> (aminoglycosides, or carbapenems) was 77.8%

Int J Infect Dis. 2007 Sep;11(5):402-6

 Good response rate (100% of patients, 26/26) from colistin plus rifampicin (10mg/kg q12h) (No control group, limited number of patients)

J Infect 2006;53:274-8

Aerosolized Colistin

- Adjunct to systemic treatment
- Current published data; too limited to allow determination
- Dosing 75-300 mg/d q 12-24h
- Adverse effect
 - Induce bronchospasm
 - Other minor symptoms:
 - cough, sore throat, chest tightness

- Direct instillation of antimicrobial agents into the ventricles
 - Occasionally necessary in patients
 - Infections that are difficult to eradicate
 - The patient is unable to undergo the surgical components of therapy
 Must use with intravenous antimicrobial agents

Intrathecal Antimicrobial Agents Administered

Antimicrobial Agent	Daily Intrathecal Dose
Vancomycin	5-20 mg
Gentamicin	1-8 mg
Tobramycin	5-20 mg
Amikacin	5-50 mg
Polymyxin B	5 mg
Colistin	10 mg
Teicoplanin	5-40 mg
Quinupristin/dalfop ristin	2-5 mg
Amphotericin B	0.1-0.5 mg

Mandell, et al. Principles and Practice of Infectious Diseases, 7th Ed(2010)

Intrathecal colistin administration

• Poorly CSF penetrate

- CSF colistin concentration is 25% of serum levels, and remained \geq to the MIC

Eur J Clin Microbiol Infect Dis2002;21:212

 Potentially safe, effective, and treatment option for MDR GNB infection

Largest series, 51 cases of *A. baumannii* nosocomial meningitis

 100% (8/8) of patients treated with intravenous and IT colistin were survived (p = 0.04)

J Antimicrob Chemother 2008;61:908

Intrathecal colistin administration

Dosing

Variable doses ranging from 1.6 to 20 mg/day (q12-48h)

J Infect. 2005;50: 348, J Clin Microbiol. 2005;43:4916, J Antimicrob Chemother. 2004;54:290 J Clin Microbiol. 2000;38:3523 , Clin Infect Dis. 1999;28:916

Neurotoxicity

- Meningeal irritation; most frequent (20%)
 33% of patients had to be stop treatment
 33% of patients, doses had to be reduced
- Neurological signs of meningismus with increased cell count in CSF

Int J Antimicrob Agents 2007;29:9-25

MDR bacterial infection

Extended-Spectrum β-Lactamases (ESBL)-producing bacteria

Hydrolyze

extended-spectrum cephalosporins
 with an oxyimino side chain

Cefotaxime Ceftriaxone Ceftazidime

- oxyimino-monobactam: aztreonam
- Resistance to these antibiotics and related oxyimino-beta lactams

Faculty of Medicine siriraj Hospital

ESBL-producing bacteria

Enterbacteriaceae spp.: ESBL testing?

Treatment of ESBL producing gram-negative bacterial infection

Cefepime was less effective than imipenem in the clinical studies	ro activities √√ X	Clinical efficacy √√ X
-Low serum concentration -Not enough clinical data		? ?
-No clinical data to support -No clinical data to support	.	? ?
Colistin	√ 	?

กิณะแห่งหมดาสตร์ที่รี่ราชพยายาด มหาวิทยาลัยมพิลด
 Aculty of Medicine siriraj hospital
 for the second second

Optimal Antibiotics Administration

Antibiotics

For Drug-Resistant GP Infection

F แก่ส่วยทางแห่งหลังที่รัวว่าชีพยายาต มหาวิทยาลัยมพิลล Aculty of Medicine siriraj hospital

Antibiotics For Drug-Resistant GP Infection

- Vancomycin
- Fosfomycin
- Linezolid

Daptomycin

Tigecycline

F กณะแททยศาสตร์ที่วิราชพยายาต มหาวิทยาลัยมพิลล ACULTY OF MEDICINE SIRIRAJ HOSPITAL

Anti-gram positive agents

	Vancomycin	Fosfomycin
Activity	Bactericidal	Bactericidal
Spectrum		
Indication		
Precaution		

F กณะแททยศาสตร์ที่วิราชพยายาต มหาวิทยาลัยมพิลล ACULTY OF MEDICINE SIRIRAJ HOSPITAL

Anti-gram positive agents

	Vancomycin	Fosfomycin
Dose and Administration		
Common ADRs		

F กณะแททยศาสตร์ที่วิราชพยายาต มหาวิทยาลัยมพิลล ACULTY OF MEDICINE SIRIRAJ HOSPITAL

Anti-gram positive agents

	Linezolid	Daptomycin
Activity	Bacteriostatic	Bactericidal
Spectrum		
Indication		
Precaution		
		Perry CM et al. Drugs 2001;61:525-51 Sauermann R et al. Pharmacology 2008;81:79–91

Mandell's Priniciples and practice of infectious disease 7th 2010

F กณะแห่งแห่งสงร์สีวิราชพยายาล มหาวิทยาลัยมพิตล Aculty of Medicine siriraj hospital

Anti-gram positive agents

	Linezolid	Daptomycin
Dose and Administration		
Common ADRs		

Perry CM et al. Drugs 2001;61:525-51 Sauermann R et al. Pharmacology 2008;81:79–91 Mandell's Priniciples and practice of infectious disease 7th 2010

MDR bacterial infection

Enterococcal infection

Risk factors

- cystoscopy
- cesarean section
- prostatectomy
- transrectal prostatic biopsy
- transjugular intrahepatic portosystemic shunt (TIPS)
- extracorporeal shock wave lithotripsy
- colonoscopy
- fiberoptic sigmoidoscopy
 liver biopsy

The infection usually originates from

- The genitourinary or gastrointestinal tract
- Procedures associated with
- the development of enterococcal endocarditis
 - Malignant and inflammatory lesions of the gut and biliary tract may also be the source of endocarditis

Clin Microbiol Rev 1990; 3:46-65 Medicine (Baltimore) 2007; 86:363-377 Mandell, et al. Principles and Practice of Infectious Diseases, 7th Ed(2010)

Vancomycin-Resistant *Enterococcus* (VRE)

Risk factors for VRE colonization and infection

- Prolonged hospital stays
- Exposure to intensive care units
- Post-transplantation
- Hematologic malignancies
- Exposure to antibiotics
 - Vancomycin
 - The extended-spectrum cephalosporins**
 - Antibiotics with potent activity against anaerobic bacteria

Antibiotics against *Enterococcus* spp.

Antibiotics	E. faecalis	E. faecium	VRE
Penicillin	+	+ /-	-
Ampicillin	+	+	+/- (if suscept.)
Pip/Tazo	+	+/-	-
Imipenem	+	+/-	-
Meropenem	+/-	-	-

Microbiology (2009), 155, 1749-1757 Emerg Med Clin N Am 2008; 26:813-834 Mandell, et al. Principles and Practice of Infectious Diseases, 7th Ed(2010)

Antibiotics against *Enterococcus* spp.

Antibiotics	E. faecalis	E. faecium	VRE
Aminoglycoside	+	+ (gentamicin)	+ (if suscept.)
Vancomycin	+	+	-
Linezolid	+	+	+ (bacteriostatic)
Daptomycin	+	+	- (not approved by FDA)
Tigecycline	+	+	+/- (limited clinical data)

Microbiology (2009), 155, 1749-1757 Emerg Med Clin N Am 2008; 26:813-834 Mandell, et al. Principles and Practice of Infectious Diseases, 7th Ed(2010) Faculty of medicine siriraj Hospital

Factors influencing antimicrobial use.....

Consideration of drugs

- Dose and route of administration result in <u>adequate</u> drug level <u>at the site</u> in sufficient <u>period</u>
- Have bactericidal activity against the pathogenic organism

Consideration of organisms

- MDR
- Clinical data evidence

Consideration of host and site of infecton

- Local factors at the site
- <u>Host</u> defenses/host factors
- Adjunctive therapies : remove foreign body, drainage, immunomodulation, etc

🕂 คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

JACULTY OF MEDICINE SIRIRAJ HOSPITAL

Thank You !