Stroke: Role of CT Imaging

Hyperacute infarction

1. Hyperacute infarction

Acute infarction

2. Acute infarction

Subacute infarction

3. Subacute infarction

Chronic infarction

4. Chronic infarction

CT scan

CT scan

1. CT scan

2. Stroke
Stroke: Role of CT Imaging

CT FINDINGS

<table>
<thead>
<tr>
<th>Hypodense area</th>
<th>Hyperdense artery</th>
<th>Loss gray-white matter</th>
<th>Sulcal effacement</th>
<th>Mass effect</th>
<th>Hemorrhagic transformation</th>
<th>Enhancement</th>
<th>Volume loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acute</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subacute</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chronic</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 1A-F

- **A**= HT hemorrhage, **B**= hemorrhagic transformation, **C**= MCA infarction, **D**= Subarachnoid hemorrhage, **E**= ruptured aneurysm, **F**= AVM ruptured, **G**= bleed, **H**= coagulopathy.

Fig. 2A

- **A**= hyperacute (12-24 h), **B**= acute (24 h-6 d), **C**= subacute (6-24 d), **D**= chronic (24 d-8 w), **E**= heterogenous enhancement, **F**= gyiform enhancement.

Volume loss?

Gliosis?

Fig. 2B

- **A**= hyperacute (12-24 h), **B**= acute (24 h-6 d), **C**= subacute (6-24 d), **D**= chronic (24 d-8 w), **E**= heterogenous enhancement, **F**= gyiform enhancement.
Stroke: Role of CT Imaging:

CT scan time: multidetector row CT (MDCT)

Atheromatous plaque, arterial occlusive disease, arterial dissection, dural venous sinus thrombosis.

Coronal and sagittal images of the cranium and neck.

2. Runge VM. Clinical MRI: Brain ischemic (and atrophic) disease, pp.48-77, W.B. Saunders Company, 2002