Stroke: Role of CT Imaging

-------------------------

1. Hyperacute infarction
2. Acute infarction
3. Subacute infarction
4. Chronic infarction

CT scan (2-3, 4-6, 7-11)

1. ?????? stroke ???? hemorrhage ????? hemorrhage? managemen
2. ?????? Stroke ??? aneurysm, vascular malformation ?? Tumor ?????? stroke

Scan: A, B, C

---

---

---

---
Stroke: Role of CT Imaging

A= HT hemorrhage, B= hemorrhagic transformation, C= MCA infarction, D= Subarachnoid hemorrhage, E= AVM ruptured, F= bleed, coagulopathy

???? cerebral infarction CT scan onset Stroke

(12 – 24 ?.) subacute (24 ??, 6 ?????), chronic (6 – 8 ????? ???????), hypodensity hyperacute hyperdense artery hyperdense lesion white matter hypodense lesion gray – white matter density “loss gray – white matter interface” hypodense lesion white matter heterogenous enhancement gyriform enhancement subacute stage volume loss

???????? CT ?? ?? cerebral infarction

CT FINDINGS

<table>
<thead>
<tr>
<th>Hypodense area</th>
<th>Hypodense artery</th>
<th>Subcortical</th>
<th>Mass effect</th>
<th>Enhancement</th>
<th>Volume loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoacute</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acute</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subacute</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chronic</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 1A-F ??????? CT brain intracranial hemorrhage

Fig. 2A-B ??? CT brain cerebral sulci

Fig. 2C ??? CT brain mass effect

Fig. 2D-F ??? CT brain hemorrhagic transformation
Stroke: Role of CT Imaging

CT scan time

2. Runge VM. Clinical MRI: Brain ischemic (and atrophic) disease, pp.48-77, W.B. Saunders Company, 2002