Stroke: Role of CT Imaging

Hyperacute infarction

1. Hyperacute infarction

2. Acute infarction

3. Subacute infarction

4. Chronic infarction

CT scan

A

B

C

Stroke & Role of CT Imaging
Stroke: Role of CT Imaging:

CT FINDINGS

<table>
<thead>
<tr>
<th></th>
<th>Hypodense area artery</th>
<th>Loss gray-white matter</th>
<th>Sulcal effacement</th>
<th>Mass effect</th>
<th>Hemorrhagic transformation</th>
<th>Enhancement</th>
<th>Volume loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subacute</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1A-F

- **D** CT brain
- **E** intracranial hemorrhage
- **F** Stroke

A= HT hemorrhage, B= hemorrhagic transformation, C= MCA infarction, D= Subarachnoid hemorrhage

- **E** = ruptured aneurysm, **F** = AVM ruptured, **G** = bleed

CT scan
- Hyperacute: [(12–16 days)]
- Acute: (12–24 hours)
- Subacute: (24–7 days)
- Chronic: (7–30 days)

- Gray–white matter density
- Loss gray–white matter interface
- "Sulcal effacement"
- "Sulcal effacement"

- Mass effect

- Hypodense lesion
- White matter
- "Mass effect"
- "Mass effect"

- Heterogenous enhancement
- Gyroform enhancement

Chronic:
- Gliosis
- Volume loss

CT scan
- Acute (2D)
- Subacute (2E)
- Mass effect

Fig. 2A-F

- CT brain
- Stroke

2 / 3
Stroke: Role of CT Imaging: ?? ??????? ??

CT scan time: ?????????? CT scan time: multidetector – row CT (MDCT).

2. Runge VM. Clinical MRI: Brain ischemic (and atrophic) disease, pp. 48-77, W.B. Saunders Company, 2002